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Introduction 

Before we embark on the topic of array coils designs, the reader is referred to a historic paper by 

Hoult [1] that provides a detailed overview and discussion on the NMR receiver.  Most of today’s 

RF receive coil designs are based upon the phased array coil technology proposed by Roemer 

et al. in 1990 [2], and its application to volume imaging was discussed by Hayes et al. in 1991 [3].  

(For the details of original and general phased-array radar technology, the reader may be 

referred to [4, 5].)  The reader is also encouraged to read a detailed review of array coil theory 

and application by Wright and Wald [6].  It is well known that a small surface coil yields higher 

SNR at the distances closer to the surfaces of the coil when compared with that of a volume coil 

such as birdcage coil [7].  On the other hand, a small surface coil BB1-sensitive region is (much) 

smaller than that of a volume coil.  What is remarkable in the phased array coil approach is that 

the high SNR associated with a small surface coil can be achieved and maintained over an 

extended FOV, by using a set of RF coils, which may be comparable to that of a volume coil.  

This is enabled by the development of various array coil designs for imaging applications of 

interest and the techniques to decouple the mutual inductances and thus the crosstalk among 

the array coil elements.  Adjacent coil elements are often partially overlapped to cancel the 

mutual inductance between the elements.  Next nearest and other coil elements can be 

mutually decoupled by the use of low input impedance (typically less than 5 Ohm) preamplifier 

decoupling circuit (other decoupling techniques and methods are described briefly later in this 

paper).  For detailed discussions of low noise amplifiers, the reader may refer to [8].  What the 

low input impedance preamplifier effectively does in conjunction with a coil matching/decoupling 

circuit is to eliminate the current flow in the coil element loop, thereby eliminating the magnetic 

fields induced in the neighboring coil elements.  In designing array coils, baluns and 

management of cable routing are also important factors to consider, and they are discussed 

elsewhere in this educational course. 

 

Recent advancements on MR scanners with more-available-receiver channels, together with the 

rapid developments of parallel imaging techniques [9, 10, 11], are pushing the envelope of RF 

coil technologies.  An example is the 96-channel head array coil [12].  In particular, 1.5T and 



3T MRI applications are now realized and accepted as everyday routine clinical practices.  At 

both field strengths, the key requirements are maximum achievable SNR and the coil 

optimization to the clinical applications within the framework of the parallel imaging scheme. 

(Remember that SNR is destined to be degraded or lowered from the start point, the signal 

source, to the end point of the receive chain.  Thus, the question is how to minimize the loss of 

SNR in that process.)   In this paper, the components constituting an array coil are explained, 

along with remarks about issues that should receive special attention. 

 

A Single Coil Model 

A schematic representation of a single coil including a preamplifier decoupling circuit is shown in 

Figure 1.  This coil circuit is a building block of an array coil.  L1 and R1 represent the coil 

inductance and resistance (typically around 0.5 Ohm in air and approximately 5 Ohm when 

placed on a phantom), respectively.  C1 and C2 are tuning and matching capacitances, 

respectively.  L2 is a matching inductor that plays an extremely important role; that is, a part of 

L2 functions to match the coil impedance to 50 Ohm together with C2 when looked at from the 

side of the preamplifier.  At the same time, the remaining part of L2 achieves a parallel resonant 

circuit formed with C2, in particular, when the input impedance of the preamplifier, rpreamp, 

becomes small (say, 0 to 2 Ohms).  What this means is that when looked at from the side of the 

coil, the impedance is infinity, thereby, a high-impedance or open circuit.  In other words, the 

decoupling circuit considered here is equivalently a 
4
λ

 (quarter wavelength cable) 

circuit; one end open and the other end short, the important physical property of a 
4
λ

 

transmission line.  (In fact, a 
4
λ

 cable is often used as an impedance transformer.  For 

example, a T/R switching circuit also finds the use of a 
4
λ

 cable using the properties of open 

circuit and cross diodes separating the transmit chain from the receive chain.)  What is 

extremely important to note here is that the current cannot flow in an open coil which eliminates 

the possibility of producing any induced magnetic field through non-zero mutual inductances 

present among all the neighboring coil elements. This is the underlying principle that explains 

why the crosstalk among all coil elements can be eliminated.  Incidentally, the Q of the coil 

(characterized by C1, L1 and R1), when the decoupling circuit is in effect, remains unchanged.  

The important thing to note here is that the signal source is changed from the current source 

(without preamplifier decoupling) to the voltage source (with preamplifier decoupling) that 

contains all the necessary information without losing the integrity of the original signal 



information. 

 

 

 

 

 

 

 

 

 

Figure 1 A single coil schematic representation with a low input impedance preamplifier 

 

Signal-to-Noise Ratio 

SNR is one of the most important parameters to be optimized in MRI applications, and its 

detailed discussion is given in [13].  Here, it is essential to understand how SNR relates to the 

coil-related parameters.  The signal is written as 
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where γ is the nuclear gyromagnetic ratio, B0 the static magnetic field, and B1
xy(r) the RF 

magnetic field produced by a coil with a unit current 1A.  Thus, in designing a coil, B1
xy(r) must 

be optimized.  What this means is that the coil size over a target FOV and the distance from the 

FOV need to be appropriately chosen to maximize B1
xy(r).  The size to be chosen also depends 

upon the number of available receiver channels, in general.   

 

On the other hand, NMR/MRI noise is thermal noise, and the noise generated from the coil is 

given by 

fRkTN Δ= 4   Eq. (2) 

where k is the Boltzmann constant, T the temperature in K, Δf the bandwidth, and R=RC+RS.  It 

is noted that RC is the coil resistance and RS the sample energy loss (i.e., the equivalent series 

resistance due to the induced eddy current losses in the conductive sample).  Combining Eqs. 

(1) and (2), SNR can be expressed by just using coil-related parameters as 
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To optimize SNR, B1
xy(r) can be maximized by having the coil closer to the sample, and RS can 



be minimized by choosing the coil size to match the target FOV.  RC is minimized by making the 

unloaded coil Q high.  It is well known that at low-B0 field systems (≤  0.3T) the coil resistance 

is dominant or at least comparable to the sample noise, but at 1.5T and above, the sample noise 

dominates (i.e., RS >> RC).  Furthermore, it is useful to be aware that if two coils yield the same 

relative sensitivity in free space and if they are each sample noise dominated, the two coils have 

the same absolute sensitivity [14].  This reference discusses the coil unloaded Q, loaded Q, and 

the sensitivity in detail, which should be useful to the coil engineer. 

 

Low Noise Preamplifier 

As seen previously, a low input impedance preamplifier plays a critical role in designing an array 

coil, and furthermore the characteristic parameters of preamplifiers such as noise figure certainly 

affect SNR.  What a preamplifier does is as follows.  The electromotive force or induced 

voltage (signal) in a coil is very small and typically on the order of a few μV.  This small signal is 

amplified to a few mV by a preamplifier whose gain is, say, gain of 30dB (i.e., 1000 times greater; 

the reader is referred to Table 1 for quick conversion factors; it is also noted that the gain usually 

refers to power gain in practice, thus 20dB power gain means 10dB voltage gain).   

 

Factor 1/100 1/10 1/5 1/3 1/2 2 3 4 5 6 7 10 100 

dB -20 -10 -7 -4.8 -3 3 4.8 6 7 7.8 8.45 10 20 

Table 1 Relationship between dB expression and common factor 

 

One of the parameters to measure the performance of preamplifier is the noise figure (NF) and 

discussed in detail elsewhere [1, 15].  Depicted in Figure 2 is a simple model for preamplifier 

noise. 

 

 

Figure 2 Depiction of a preamplifier noise model 

 

In Figure 2, V, NS, r and NP denote the signal, the noise generated by the resistance r of the input 

signal source and the noise generated inside the preamplifier, respectively.  Using these 

quantities, NF is defined as 
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A preamplifier is noise matched.  What this means is that for a given FET there exists a signal 

source impedance that optimizes or minimizes the noise figure.  Thus, the optimum noise figure 

can be achieved when the impedance of the receive coil matches with the source impedance of 

the FET.  The FET impedance is relatively high (>>50 Ohm), and thus there exists some sort of 

impedance transformer (a part of L2 in Figure 1 and a series capacitor grounded after L2 , i.e., an 

LC circuit that you do not see in Figure 1) that transforms 50 Ohms to the input impedance of the 

FET.  The industry standard preamplifier NF is currently less than 0.5 dB.  It is also well known 

that the first NF and gain have the most significant impact in the entire electronics circuit which is 

often cascaded, as shown in low noise amplifier design textbooks such as [8, 15].  Noise is 

generated in any passive elements, including cables, in any electronics that dissipates power.  

This is the reason that most array coils have preamplifier integrated design to minimize 

undesirable noise contributions.  

 

Array Coil Designs 

Although the array coil designs employing the preamplifier decoupling are focused in this paper, 

it is useful for the reader to know different decoupling techniques.  To name a few, they are: 

 Overlap [2], 

 Quadrature (intrinsic isolation/decoupling), 

 Solenoidal array employing the anti-turn loop [16], 

 Capacitor decoupling to cancel the inductance [17], 

 Decoupling network after coils to manipulate the electric filed induced by the mutual 

inductive coupling [18], and 

 Shield or transmission line designs because the most electromagnetic fields are contained 

between the coil element and the shield [19] (In this case, only some amount of 

electromagnetic fields leak out for imaging purpose.  Even if the leaked electromagnetic 

fields couple with each other, the isolation between the coils is still adequate as the leaked 

fields are a small portion of the entire fields.) 

 

Going back to the array coil designs employing the preamplifier decoupling, we have reviewed in 

the previous sections how each coil element is constructed to produce no crosstalk among all 

other coil elements.  Figure 3 shows a 4-channel array coil to illustrate the concept. 



 

Figure 3 Schematic representation of an array coil (4-channel) 

 

   

Figure 4 Depiction of B1 sensitivity profile in an array coil 

 

Each coil has its own B1 sensitivity profile as shown in Figure 4.  Because the coil is a surface 

coil, which yields a high SNR only over a small region, high SNR can be generated over a larger 

region of interest, i.e., FOV or ROI, if each channel SNR is combined by a Sum-of-Squares 

method [2], for example.  This achieves the overall high SNR over the target FOV, shown in 

Figure 4. 

 

It is straightforward to extend the array concept to 8-channel, 16-channel, and even larger 



numbers of channels.  The number of the coil channels is determined by the number of 

available receiver channels and the target FOV or ROI while considering the appropriate size of 

each coil with SNR optimization in mind.  There are many references that discuss different array 

coil designs for various imaging applications at different field strengths.  Although an array coil 

using quadrature pairs (for each channel) is possible, the current trend is to use a set of various 

(size and shape) loop coils as the number of available receiver channels increases. 

 

With the advent of parallel imaging techniques [9, 10, 11], the array coil designs play a major role 

in achieving the desired parallel-imaging performance.  There are many references available for 

this discussion [20-31].  However, it is noted that there is a major difference between SMASH 

and SENSE with respect to the coil designs.  SMASH is a ‘’k-space’’ reconstruction approach 

whereas SENSE is an ‘’x-space’’ (i.e., image domain) reconstruction approach.  In SMASH, 

spatial harmonics need to be formed by manipulating each coil BB1 sensitivity in the array to 

replace some k-space data lines which would have been otherwise collected by the application 

of conventional gradient phase encoding.  This means that the direction of the array must 

coincide with the desired phase encoding direction.  The human body has complex shapes and 

curvatures, and it is not always easy to construct a SMASH array coil whose direction/orientation 

coincides with a desired phase encoding direction in a routine clinical imaging practice.  On the 

other hand, SENSE is less restrictive as to how each-channel coil is placed in conjunction with a 

chosen phase encoding direction.  However, in SENSE, it is essential for one to be able to tell 

which B1 sensitivity belongs to which coil in order to unfold the aliased image that is created and 

thus achieve a desired acceleration factor.  The acceleration factor is the inverse of the 

reduction factor in imaging time.  The measure of how ‘’easy’’ it is to tell the B1 sensitivity 

distinctiveness is given by a so-called g-factor.  Thus, the coil design work requires the 

optimization of the g-factor for a given imaging application [20].  Furthermore, the acceleration 

factor depends upon the number of receiver channels.  That is, if you wish to achieve, for 

example, an acceleration factor of 3 in x-direction, there need to be at least 3 individual coils in 

that direction. 

 

Summary 

The research areas of array coil designs are indeed profound and broad from the perspective of 

the entire receive chain and the emerging applications of parallel imaging.  There exist many 

coil designs for different applications at various B0 field strengths.  However, the underlying 

design principles for the array coil designs are essentially the same.  What we must keep in 

mind when designing RF array coils may be summarized as follows: 

(1) clinical applications of interest including the directions of phase encoding and the target 



acceleration factor; 

(2) the number of available receiver channels, the field strength and the desirable FOV; and 

(3) optimization of the clinical applications of interest (SNR, uniformity, FATSAT, etc). 
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